Unmanned Aerial Vehicles (UAVs) have attracted considerable research interest recently. Especially when it comes to the realm of Internet of Things, the UAVs with Internet connectivity are one of the main demands. Furthermore, the energy constraint i.e. battery limit is a bottle-neck of the UAVs that can limit their applications. We try to address and solve the energy problem. Therefore, a path planning method for a cellular-connected UAV is proposed that will enable the UAV to plan its path in an area much larger than its battery range by getting recharged in certain positions equipped with power stations (PSs). In addition to the energy constraint, there are also no-fly zones; for example, due to Air to Air (A2A) and Air to Ground (A2G) interference or for lack of necessary connectivity that impose extra constraints in the trajectory optimization of the UAV. No-fly zones determine the infeasible areas that should be avoided. We have used a reinforcement learning (RL) hierarchically to extend typical short-range path planners to consider battery recharge and solve the problem of UAVs in long missions. The problem is simulated for the UAV that flies over a large area, and Q-learning algorithm could enable the UAV to find the optimal path and recharge policy.


翻译:最近,无人驾驶航空飞行器(无人驾驶飞行器)引起了相当大的研究兴趣,特别是在物联网领域,具有互联网连接的无人驾驶飞行器是主要需求之一。此外,能源限制,即电池限制是无人驾驶飞行器的瓶颈,可以限制其应用。我们试图解决和解决能源问题。因此,提议了蜂窝连接的无人驾驶飞行器的路径规划方法,使无人驾驶飞行器能够在一个比其电池范围大得多的地区规划其路径。除了能源限制外,还存在禁飞区;例如,由于空气对空气(A2A)和空气对地面(A2G)的干扰,或缺乏必要的连通性,对无人驾驶飞行器的轨迹优化造成额外的限制。禁飞区决定了应当避免的不可行区域。我们用强化学习(RL)的等级来扩大典型的短程规划器,以考虑电池补给问题,解决长期飞行任务中的无人驾驶飞行器问题。问题在于空气航空对空气(A2A)和地面(A2G)的干扰,从而能够将AAAV的高度演算成一个能够使AV系统得到最佳的飞行。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月17日
Hierarchical Width-Based Planning and Learning
Arxiv
0+阅读 · 2021年1月15日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员