Emergency vehicle (EMV) service is a key function of cities and is exceedingly challenging due to urban traffic congestion. The main reason behind EMV service delay is the lack of communication and cooperation between vehicles blocking EMVs. In this paper, we study the improvement of EMV service under V2X connectivity. We consider the establishment of dynamic queue jump lanes (DQJLs) based on real-time coordination of connected vehicles in the presence of non-connected human-driven vehicles. We develop a novel Markov decision process formulation for the DQJL coordination strategies, which explicitly accounts for the uncertainty of drivers' yielding pattern to approaching EMVs. Based on pairs of neural networks representing actors and critics for agent vehicles, we develop a multi-agent actor-critic deep reinforcement learning algorithm that handles a varying number of vehicles and a random proportion of connected vehicles in the traffic. Approaching the optimal coordination strategies via indirect and direct reinforcement learning, we present two schemata to address multi-agent reinforcement learning on this connected vehicle application. Both approaches are validated, on a micro-simulation testbed SUMO, to establish a DQJL fast and safely. Validation results reveal that, with DQJL coordination strategies, it saves up to 30% time for EMVs to pass a link-level intelligent urban roadway than the baseline scenario.
翻译:由于城市交通堵塞,紧急车辆服务是城市的一个关键功能,由于城市交通堵塞,其挑战性极强。快速机动车辆服务延迟的主要原因是阻碍机动车辆的车辆之间缺乏沟通与合作。在本文件中,我们研究了V2X连通性下改进机动车辆服务的问题。我们考虑在非连通人类驱动车辆存在的情况下,在连通车辆的实时协调基础上,建立动态的队列跳车(DQJL)系统。我们为DQJL协调战略开发了新型的Markov决策程序,明确说明了司机在接近机动车辆方面的产出模式的不确定性。基于代表代理车辆行为者和批评者的神经网络的对对等,我们开发了多剂行为体-丙型深度强化学习算法,在交通中处理不同数量的车辆和相联车辆的随机比例。通过间接和直接强化学习,采用最佳协调战略,我们提出了两种系统模型,用于在这种连通车辆应用中进行多剂强化学习。两种方法都得到了验证,即以微振动式测试SUMO系统运行模式为基础,以建立DJL级基准,从而安全地展示DJL级和透明地将快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、同步、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、快速、