Uncertainty quantification of predictive models is crucial in decision-making problems. Conformal prediction is a general and theoretically sound answer. However, it requires exchangeable data, excluding time series. While recent works tackled this issue, we argue that Adaptive Conformal Inference (ACI, Gibbs and Cand{\`e}s, 2021), developed for distribution-shift time series, is a good procedure for time series with general dependency. We theoretically analyse the impact of the learning rate on its efficiency in the exchangeable and auto-regressive case. We propose a parameter-free method, AgACI, that adaptively builds upon ACI based on online expert aggregation. We lead extensive fair simulations against competing methods that advocate for ACI's use in time series. We conduct a real case study: electricity price forecasting. The proposed aggregation algorithm provides efficient prediction intervals for day-ahead forecasting. All the code and data to reproduce the experiments is made available.
翻译:预测模型的不确定性量化对于决策问题至关重要。 非正式预测是一个一般的、理论上合理的答案。 但是,它需要可交换的数据,不包括时间序列。 尽管最近的工作解决了这个问题,但我们认为,为分配-临时时间序列开发的适应性非正式推断(ACI、Gibbs和Cand ⁇ e},2021年)是具有一般依赖性的时间序列的一个良好程序。我们从理论上分析了学习率对其在可交换和自动递减案例中的效率的影响。我们提出了一个无参数方法,即AGACI,该方法以在线专家汇总为基础,适应性地建立在ACI上。我们对倡导ACI在时间序列中使用的竞争性方法进行了广泛的公平模拟。我们开展了一项真正的案例研究:电价预测。拟议的汇总算法为日头预报提供了有效的预测间隔。所有用于复制实验的代码和数据都可用。