In this paper, we introduce an automata-based framework for planning with relaxed specifications. User relaxation preferences are represented as weighted finite state edit systems that capture permissible operations on the specification, substitution and deletion of tasks, with complex constraints on ordering and grouping. We propose a three-way product automaton construction method that allows us to compute minimal relaxation policies for the robots using standard shortest path algorithms. The three-way automaton captures the robot's motion, specification satisfaction, and available relaxations at the same time. Additionally, we consider a bi-objective problem that balances temporal relaxation of deadlines within specifications with changing and deleting tasks. Finally, we present the runtime performance and a case study that highlights different modalities of our framework.
翻译:在本文中,我们引入一个基于自动数据的框架,以宽松的规格进行规划。用户放松优惠是作为加权的有限状态编辑系统代表的,它能捕捉到在规格、替代和删除任务方面允许的操作,对订购和分组有复杂的限制。我们提出了一个三向产品自动数据制造方法,使我们能够使用标准的最短路径算法计算机器人的最低限度放松政策。三向自动数据同时捕捉机器人的运动、规格满意度和可用的放松。此外,我们考虑了一个双重目标问题,即在规格内暂时放宽最后期限与改变和删除任务之间保持平衡。最后,我们介绍了运行时效和案例研究,其中强调了我们框架的不同模式。