Soil carbon accounting and prediction play a key role in building decision support systems for land managers selling carbon credits, in the spirit of the Paris and Kyoto protocol agreements. Land managers typically rely on computationally complex models fit using sparse datasets to make these accountings and predictions. The model complexity and sparsity of the data can lead to over-fitting, leading to inaccurate results using new data or making predictions. Modellers address over-fitting by simplifying their models, neglecting some soil organic carbon (SOC) components. In this study, we introduce two novel SOC models and a new RothC-like model and investigate how the SOC components and complexity of the SOC models affect the SOC prediction in the presence of small and sparse time series data. We develop model selection methods that can identify the soil carbon model with the best predictive performance, in light of the available data. Through this analysis we reveal that commonly used complex soil carbon models can over-fit in the presence of sparse time series data, and our simpler models can produce more accurate predictions.
翻译:土壤碳核算和预测在按照《巴黎议定书》和《京都议定书》协定的精神为出售碳信用量的土地管理者建立决策支持系统方面发挥着关键作用。土地管理者通常依靠计算上复杂的模型来利用稀少的数据集进行这些核算和预测。模型的复杂性和广度可导致过度适应,使用新的数据或作出预测,导致不准确的结果。模型员通过简化模型处理过度适应问题,忽视了一些土壤有机碳成分。在本研究中,我们引入了两个新的SOC模型和一个类似于RothC的新的模型,并调查SOC模型的组成和复杂性如何在小型和稀少的时间序列数据存在的情况下影响SOC预测。我们开发了模型选择方法,根据现有数据,用最准确的预测性确定土壤碳模型。我们通过这一分析发现,常用的复杂土壤碳模型在缺少时间序列数据的情况下可能过于合适。我们比较简单的模型可以产生更准确的预测。