This paper focuses on signal processing tasks in which the signal is transformed from the signal space to a higher dimensional coefficient space (also called phase space) using a continuous frame, processed in the coefficient space, and synthesized to an output signal. We show how to approximate such methods, termed phase space signal processing methods, using a Monte Carlo method. As opposed to standard discretizations of continuous frames, based on sampling discrete frames from the continuous system, the proposed Monte Carlo method is directly a quadrature approximation of the continuous frame. We show that the Monte Carlo method allows working with highly redundant continuous frames, since the number of samples required for a certain accuracy is proportional to the dimension of the signal space, and not to the dimension of the phase space. Moreover, even though the continuous frame is highly redundant, the Monte Carlo samples are spread uniformly, and hence represent the coefficient space more faithfully than standard frame discretizations.


翻译:本文侧重于信号处理任务,其中将信号从信号空间转换为使用连续框架、在系数空间中处理和合成成输出信号的更高维系数空间(也称为相位空间)的信号处理任务。我们展示了如何使用蒙特卡洛方法来近似此类方法,称为相位空间信号处理方法。与基于连续系统离散框架取样的连续框架标准离散相比,拟议的蒙特卡洛方法直接是连续框架的二次近距离。我们显示蒙特卡洛方法允许使用高度冗余的连续框架,因为某种精确度所需的样本数量与信号空间的尺寸成正比,而不是与相位空间的尺寸成比例。此外,尽管连续框架非常多余,但蒙特卡洛样本分布一致,因此代表的系数空间比标准框架离散更加忠实。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2018年11月27日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
126+阅读 · 2019年11月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2018年11月27日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员