For decades, procedural worlds have been built on procedural noise functions such as Perlin noise, which are fast and infinite, yet fundamentally limited in realism and large-scale coherence. We introduce Terrain Diffusion, a generative framework that bridges the fidelity of diffusion models with the properties that made procedural noise indispensable: seamless infinite extent, seed-consistency, and constant-time random access. At its core is InfiniteDiffusion, a novel algorithm for infinite generation that reformulates standard diffusion sampling for unbounded domains. While noise functions remain near-instant, our framework outpaces orbital velocity by 9 times on a consumer GPU, enabling realistic terrain generation at interactive rates. We integrate a hierarchical stack of diffusion models to couple planetary context with local detail, a compact Laplacian encoding to stabilize outputs across Earth-scale dynamic ranges, and an open-source infinite-tensor framework for constant-memory manipulation of unbounded tensors. Together, these components position diffusion models as a practical, scalable foundation for the next generation of infinite virtual worlds.


翻译:数十年来,程序化世界构建一直依赖于Perlin噪声等程序化噪声函数,这些方法虽然快速且能无限生成,但在真实感与大规模连贯性方面存在本质局限。我们提出地形扩散——一个生成式框架,它将扩散模型的保真度与程序化噪声不可或缺的特性(无缝无限延展、种子一致性、恒定时间随机访问)相结合。其核心是InfiniteDiffusion算法,这是一种面向无界域无限生成的新方法,通过重构标准扩散采样过程实现。虽然噪声函数仍保持近即时生成速度,但我们的框架在消费级GPU上的运行速度达到轨道速度的9倍,实现了交互速率下的真实地形生成。我们采用分层堆叠的扩散模型耦合行星尺度上下文与局部细节,通过紧凑的拉普拉斯编码稳定地球级动态范围内的输出,并开发开源无限张量框架以实现无界张量的恒定内存操作。这些组件共同将扩散模型确立为新一代无限虚拟世界实用化、可扩展的基础架构。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员