Iterative refinement methods based on a denoising-inversion cycle are powerful tools for enhancing the quality and control of diffusion models. However, their effectiveness is critically limited when combined with standard Classifier-Free Guidance (CFG). We identify a fundamental limitation: CFG's extrapolative nature systematically pushes the sampling path off the data manifold, causing the approximation error to diverge and undermining the refinement process. To address this, we propose Guided Path Sampling (GPS), a new paradigm for iterative refinement. GPS replaces unstable extrapolation with a principled, manifold-constrained interpolation, ensuring the sampling path remains on the data manifold. We theoretically prove that this correction transforms the error series from unbounded amplification to strictly bounded, guaranteeing stability. Furthermore, we devise an optimal scheduling strategy that dynamically adjusts guidance strength, aligning semantic injection with the model's natural coarse-to-fine generation process. Extensive experiments on modern backbones like SDXL and Hunyuan-DiT show that GPS outperforms existing methods in both perceptual quality and complex prompt adherence. For instance, GPS achieves a superior ImageReward of 0.79 and HPS v2 of 0.2995 on SDXL, while improving overall semantic alignment accuracy on GenEval to 57.45%. Our work establishes that path stability is a prerequisite for effective iterative refinement, and GPS provides a robust framework to achieve it.
翻译:基于去噪-反转循环的迭代优化方法是提升扩散模型质量与控制力的强大工具。然而,当与标准的无分类器引导结合时,其有效性受到严重制约。我们发现一个根本性局限:CFG的外推特性会系统性地将采样路径推离数据流形,导致近似误差发散并破坏优化过程。为解决此问题,我们提出引导路径采样,这是一种全新的迭代优化范式。GPS用原则性的流形约束插值替代不稳定的外推操作,确保采样路径始终保持在数据流形上。我们从理论上证明,这种修正能将误差序列从无界放大转变为严格有界,从而保证稳定性。此外,我们设计了动态调整引导强度的最优调度策略,使语义注入与模型固有的从粗到细生成过程相协调。在SDXL、Hunyuan-DiT等现代骨干模型上的大量实验表明,GPS在感知质量与复杂提示遵循度方面均优于现有方法。例如,GPS在SDXL上实现了0.79的优异ImageReward分数和0.2995的HPS v2分数,同时将GenEval的整体语义对齐准确率提升至57.45%。我们的研究证实路径稳定性是实现有效迭代优化的先决条件,而GPS为此提供了稳健的实现框架。