A datatype defining rewrite system (DDRS) is an algebraic (equational) specification intended to specify a concrete datatype. When interpreting the equations from left-to-right, a DDRS defines a term rewriting system that must be ground-complete. First we define two DDRSs for the ring of integers, each comprising twelve rewrite rules, and prove their ground-completeness. Then we introduce natural number and integer arithmetic specified according to unary view, that is, arithmetic based on a postfix unary append constructor (a form of tallying). Next we specify arithmetic based on two other views: binary and decimal notation. The binary and decimal view have as their characteristic that each normal form resembles common number notation, that is, either a digit, or a string of digits without leading zero, or the negated versions of the latter. Integer arithmetic in binary and decimal notation is based on (postfix) digit append functions. For each view we define a DDRS, and in each case the resulting datatype is a canonical term algebra that extends a corresponding canonical term algebra for natural numbers. Then, for each view, we consider an alternative DDRS based on tree constructors that yields comparable normal forms, which for that view admits expressions that are algorithmically more involved. For all DDRSs considered, ground-completeness is proven.
翻译:数据类型定义重写系统( DDRS) 是用于指定具体数据类型的代数( equational) 的代数( equation) 。 在解释左对右方方的方程式时, 一个 DDS 定义了一个术语重写系统, 它必须是地面完成的。 首先, 我们为整形环定义了两个DIRS, 每个由十二条重写规则组成, 并证明了它们的地面完整性。 然后, 我们根据单词视图, 即根据后缀单附加器( 一种计数形式), 引入自然数字和整数计算。 下一步, 我们根据另外两种观点, 定义一个后缀附加器( 一种计算形式) 。 我们根据其他两种观点指定了算术: 二进制和小数标记。 二进制和小数视图的特性是每个正态格式都类似于通用数字, 即数字, 一个数字, 一个数字, 一个数字, 一个数字或数, 一个数字串数, 一个数字, 用来构建一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观, 一个直观的直观的直观, 直观, 一个直观, 一个直观, 直观, 直观, 直观, 直观, 直观, 直观, 直观, 。