Propensity score matching (PSM) is a pseudo-experimental method that uses statistical techniques to construct an artificial control group by matching each treated unit with one or more untreated units of similar characteristics. To date, the problem of determining the optimal number of matches per unit, which plays an important role in PSM, has not been adequately addressed. We propose a tuning-parameter-free PSM method based on the nonparametric maximum-likelihood estimation of the propensity score under the monotonicity constraint. The estimated propensity score is piecewise constant, and therefore automatically groups data. Hence, our proposal is free of tuning parameters. The proposed estimator is asymptotically semiparametric efficient for the univariate case, and achieves this level of efficiency in the multivariate case when the outcome and the propensity score depend on the covariate in the same direction. We conclude that matching methods based on the propensity score alone cannot, in general, be efficient.
翻译:预测性分数匹配(PSM)是一种假实验方法,它使用统计技术来构建一个人工控制组,将每个经处理的单位与一个或一个以上未处理的相类似特性的单位相匹配。迄今为止,确定每个单位最佳匹配数(在PSM中起着重要作用)的问题尚未得到充分解决。我们建议基于单一度限制下对偏差度分的最大非参数类比估计,采用无调节性PSM方法。估计偏差分是单数不变的,因此自动分组数据。因此,我们的提议没有调整参数。拟议的估计性能对于单体体情况来说是无效果的,在多变量情况下,当结果和偏差分分取决于同一方向的共变差时,达到这一效率水平。我们的结论是,仅仅基于偏度分的匹配方法一般不能有效。