The brains of all bilaterally symmetric animals on Earth are are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but they specialize to possess different attributes. The left hemisphere is believed to specialize in specificity and routine, the right in generalities and novelty. In this study, we propose an artificial neural network that imitates that bilateral architecture using two convolutional neural networks with different training objectives and test it on an image classification task. The bilateral architecture outperforms architectures of similar representational capacity that don't exploit differential specialization. It demonstrates the efficacy of bilateralism and constitutes a new principle that could be incorporated into other computational neuroscientific models and used as an inductive bias when designing new ML systems. An analysis of the model can help us to understand the human brain.
翻译:地球上所有双边对称动物的大脑被分为左半球和右半球。 半球的解剖和功能有很大程度的重叠, 但它们具有不同的特性。 据信, 左半球在特殊性和常规性、 泛泛和新颖性方面拥有专门性。 我们在本研究中建议建立一个人工神经网络, 仿照双边结构, 使用两个具有不同培训目标的共进神经网络, 并在图像分类任务上测试它。 双边结构优于不利用不同专业化的类似代表性能力的架构。 它展示了双边主义的功效, 并构成一个新的原则, 可以纳入其他计算性神经科学模型, 并在设计新的 ML 系统时用作一种感性偏差。 对模型的分析可以帮助我们理解人类大脑。