A novel control & software architecture using ROS C++ is introduced for object interception by a UAV with a mounted depth camera and no external aid. Existing work in trajectory prediction focused on the use of off-board tools like motion capture rooms to intercept thrown objects. The present study designs the UAV architecture to be completely on-board capable of object interception with the use of a depth camera and point cloud processing. The architecture uses an iterative trajectory prediction algorithm for non-propelled objects like a ping-pong ball. A variety of path planning approaches to object interception and their corresponding scenarios are discussed, evaluated & simulated in Gazebo. The successful simulations exemplify the potential of using the proposed architecture for the on-board autonomy of UAVs intercepting objects.
翻译:使用ROS C+++的新型控制和软件结构,由无人驾驶飞行器使用安装的深深相机和外部援助拦截物体; 现有轨迹预测工作的重点是使用移动抓捕室等机外工具拦截投掷的物体; 本研究设计了无人驾驶飞行器结构,利用深度相机和点云处理,使无人驾驶飞行器能够完全在机上拦截物体; 该结构对像乒乓球这样的非推进物体使用迭代轨迹预测算法; 在加泽博讨论、评价和模拟各种途径规划方法,以讨论、评价和模拟各种途径规划方法来拦截物体及其相应的情景; 成功的模拟展示了利用无人驾驶飞行器拦截物体在机上自主的拟议结构的潜力。