Learning effective visual representations without human supervision is a long-standing problem in computer vision. Recent advances in self-supervised learning algorithms have utilized contrastive learning, with methods such as SimCLR, which applies a composition of augmentations to an image, and minimizes a contrastive loss between the two augmented images. In this paper, we present CLAWS, an annotation-efficient learning framework, addressing the problem of manually labeling large-scale agricultural datasets along with potential applications such as anomaly detection and plant growth analytics. CLAWS uses a network backbone inspired by SimCLR and weak supervision to investigate the effect of contrastive learning within class clusters. In addition, we inject a hard attention mask to the cropped input image before maximizing agreement between the image pairs using a contrastive loss function. This mask forces the network to focus on pertinent object features and ignore background features. We compare results between a supervised SimCLR and CLAWS using an agricultural dataset with 227,060 samples consisting of 11 different crop classes. Our experiments and extensive evaluations show that CLAWS achieves a competitive NMI score of 0.7325. Furthermore, CLAWS engenders the creation of low dimensional representations of very large datasets with minimal parameter tuning and forming well-defined clusters, which lends themselves to using efficient, transparent, and highly interpretable clustering methods such as Gaussian Mixture Models.


翻译:在计算机视野中,自监督的学习算法最近的进展利用了对比性学习方法,例如SimCLR等方法,将增强成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成成两幅图之间的对比性损失最小化。在本文中,我们提出CLAWS,这是一个说明性有效的学习框架,处理人工标记大型农业数据集以及可能应用的应用程序的问题,如异常检测和植物生长分析等。CLAWS利用SimCLR和弱力监督的网络骨干来调查课堂群内对比学习对比性学习效果的效果。此外,我们进行实验和广泛评估后显示,CLAWS在最大成成成成成成成型的NMI评分中具有竞争力的0.732分数, 并且将CLAWS进行最有透明度的模型化成为高层次的模型。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
论文浅尝 | Multimodal Few-Shot Learning with Frozen Language Models
开放知识图谱
1+阅读 · 2021年9月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
论文浅尝 | Multimodal Few-Shot Learning with Frozen Language Models
开放知识图谱
1+阅读 · 2021年9月23日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文共读 | Attention is All You Need
黑龙江大学自然语言处理实验室
14+阅读 · 2017年9月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员