This paper makes the first attempt to apply newly developed upwind GFDM for the meshless solution of two-phase porous flow equations. In the presented method, node cloud is used to flexibly discretize the computational domain, instead of complicated mesh generation. Combining with moving least square approximation and local Taylor expansion, spatial derivatives of oil-phase pressure at a node are approximated by generalized difference operators in the local influence domain of the node. By introducing the first-order upwind scheme of phase relative permeability, and combining the discrete boundary conditions, fully-implicit GFDM-based nonlinear discrete equations of the immiscible two-phase porous flow are obtained and solved by the nonlinear solver based on the Newton iteration method with the automatic differentiation, to avoid the additional computational cost and possible computational instability caused by sequentially coupled scheme. Two numerical examples are implemented to test the computational performances of the presented method. Detailed error analysis finds the two sources of the calculation error, and points out the significant effect of the symmetry or uniformity of the node allocation in the node influence domain on the accuracy of generalized difference operators, and the radius of the node influence domain should be small to achieve high calculation accuracy, which is a significant difference between the studied parabolic two-phase porous flow problem and the elliptic problems when GFDM is applied. In all, the upwind GFDM with the fully implicit nonlinear solver and related analysis about computational performances given in this work may provide a critical reference for developing a general-purpose meshless numerical simulator for porous flow problems.
翻译:本文首次尝试将新开发的上风GFDM应用于两阶段多孔流量方程式的网状溶解式。 在所介绍的方法中,节点云用于使计算域灵活离散,而不是复杂的网状生成。结合移动最小正方近似值和局部泰勒扩展,节点的石油阶段压力的空间衍生物被节点当地影响域的通用差异操作者所近似。通过引入第一级相向渗透性相向上风方案,并结合离散边界条件,完全隐蔽地以GFDM为基础的双级多孔流非线性离散方程式获得并用非线性分解法将计算域域域内分流灵活分解。 精确地计算方法的计算性能有两个数字示例。 详细错误分析发现计算错误的两个来源,并指出,基于不易偏移的双向双向的双向分解法分解法分解法的全程分解法分解非线式非线式非线性等方方程式。 在不精确的轨道分法轨道上,整个轨道分解的轨道分解的轨道分解法的分解法的分解法的分解法的分解法的分解法分解法的分解法的分法的分解法,在不精确度之间,整个轨道的分解的分解法的分解的分解的分解法的分解法的分解法的分解法的分解法分解法分解法的分法的分法的分法的分法分法分法分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分法的分的分法的分的分的分的分的分的分的分的分的分的分的分法的分法的分法分法分法的分法的分法的分法的分法的分法的分法的分