The resilience problem for a query and an input set or bag database is to compute the minimum number of facts to remove from the database to make the query false. In this paper, we study how to compute the resilience of Regular Path Queries (RPQs) over graph databases. Our goal is to characterize the regular languages L for which it is tractable to compute the resilience of the existentially-quantified RPQ built from L. We show that computing the resilience in this sense is tractable (even in combined complexity) for all RPQs defined from so-called local languages. By contrast, we show hardness in data complexity for RPQs defined from the following language classes (after reducing the languages to eliminate redundant words): all finite languages featuring a word containing a repeated letter, and all languages featuring a specific kind of counterexample to being local (which we call four-legged languages). The latter include in particular all languages that are not star-free. Our results also imply hardness for all non-local languages with a so-called neutral letter. We last show tractability for some classes of non-local languages, namely the so-called bipartite chain languages and one-dangling languages, and highlight some remaining obstacles towards a full dichotomy.


翻译:针对查询和输入集合或包数据库的弹性问题,旨在计算使查询结果为假所需从数据库中移除的最小事实数量。本文研究如何计算图数据库中正则路径查询(RPQs)的弹性。我们的目标是刻画正则语言L的特征,使得基于L构建的存在量化RPQ的弹性计算在计算上是可处理的。我们证明,对于所有由所谓局部语言定义的RPQ,在这种意义上的弹性计算(即使在组合复杂性下)是可处理的。相比之下,我们展示了以下语言类定义的RPQ在数据复杂性上的困难性(在简化语言以消除冗余词后):所有包含重复字母单词的有限语言,以及所有具有特定非局部反例(我们称之为四足语言)的语言。后者特别包括所有非星号自由的语言。我们的结果还暗示了所有具有所谓中性字母的非局部语言的困难性。最后,我们展示了某些非局部语言类的可处理性,即所谓的二分链语言和单悬挂语言,并指出了实现完全二分分类的一些剩余障碍。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员