Opinion summarization is the task of automatically generating summaries for a set of reviews about a specific target (e.g., a movie or a product). Since the number of reviews for each target can be prohibitively large, neural network-based methods follow a two-stage approach where an extractive step first pre-selects a subset of salient opinions and an abstractive step creates the summary while conditioning on the extracted subset. However, the extractive model leads to loss of information which may be useful depending on user needs. In this paper we propose a summarization framework that eliminates the need to rely only on pre-selected content and waste possibly useful information, especially when customizing summaries. The framework enables the use of all input reviews by first condensing them into multiple dense vectors which serve as input to an abstractive model. We showcase an effective instantiation of our framework which produces more informative summaries and also allows to take user preferences into account using our zero-shot customization technique. Experimental results demonstrate that our model improves the state of the art on the Rotten Tomatoes dataset and generates customized summaries effectively.


翻译:意见总和是自动生成关于具体目标(如电影或产品)的一组审查摘要的任务。由于对每个目标的审查数量之大可能令人望而却步,因此神经网络方法遵循两阶段办法,即采掘步骤首先预选一组突出意见和抽象步骤,在对提取的子集进行限制时产生摘要。然而,采掘模型导致信息丢失,而这些信息可能根据用户的需要而有用。在本文件中,我们提议了一个总结框架,消除仅依赖预选的内容和浪费可能有用的信息的必要性,特别是在定制摘要时。这个框架使得所有投入审查都能被首先浓缩到多个密度矢量中,作为抽象模型的投入。我们展示了我们框架的有效回溯性,这种框架能产生更丰富的摘要,并允许用户偏好使用我们的零光定制定制技术。实验结果表明,我们的模型改进了罗滕托马托斯数据集的艺术状态,并有效地生成了定制的概要。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
3+阅读 · 2018年12月18日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月31日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
【文本摘要】Text Summarization文本摘要与注意力机制
深度学习自然语言处理
9+阅读 · 2020年3月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员