Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.
翻译:功能磁共振成像(fMRI)是一种神经成像技术,根据一个对象完成的任务记录不同区域通过采集血液氧水平在大脑中的神经活化。鉴于FMRI数据,预测一个人认知疲劳状态的问题尚未得到充分调查。本文建议把认知疲劳状态分为六级,从不耐烦到极端疲劳状态,将这一问题作为一个多级分类问题加以解决。我们建立了一个神经时空模型,利用神经神经网络进行空间特征提取和长期短期内存(LSTM)网络进行4DFMRI扫描的时间模型模拟。我们还采用了称为Moco(Moum Contrast)的自我监督方法,将我们的模型放在公共数据集BOLD5000上,并微调了我们的标签数据集,以预测认知疲劳。我们的新数据集包含从神经神经神经损伤(TBI)病人和健康控制(LSTM) 的FMRI扫描。我们采用了一种自我监督的方法,即自我监督的模型(Moco(Moum Contraststst) ) 来将我们的模型放在公共数据集上,BLD5000, 并精确地分析先前的认知系统。