I present a parallel algorithm for exact probabilistic inference in Bayesian networks. For polytree networks with n variables, the worst-case time complexity is O(log n) on a CREW PRAM (concurrent-read, exclusive-write parallel random-access machine) with n processors, for any constant number of evidence variables. For arbitrary networks, the time complexity is O(r^{3w}*log n) for n processors, or O(w*log n) for r^{3w}*n processors, where r is the maximum range of any variable, and w is the induced width (the maximum clique size), after moralizing and triangulating the network.
翻译:我提出了一个用于贝叶斯网络精确概率推算的平行算法。对于具有n变量的多树网络,最坏的情况是使用n处理器的CREW PRAM(CREW-O(log n)) 和 n 处理器(CREW-arrent-write平行随机存取机)上的O(log n),对于任何固定数量的证据变量。对于任意的网络,对于 n 处理器来说,时间复杂性是 O(r ⁇ 3w ⁇ log n),对于 r ⁇ 3w ⁇ n 处理器来说,时间复杂性是 O(w*log n),r 是任何变量的最大范围,w是导引宽(最大 cloque 尺寸),在网络道德化和三角后。