The Gram matrix of a matrix $A$ is defined as $AA^T$ (or $A^T\!A$). Computing the Gram matrix is an important operation in many applications, such as linear regression with the least squares method, where the explicit solution formula includes the Gram matrix of the data matrix. Secure distributed matrix multiplication (SDMM) can be used to compute the product of two matrices using the help of worker servers. If a Gram matrix were computed using SDMM, the data matrix would need to be encoded twice, which causes an unnecessary overhead in the communication cost. We propose a new scheme for this purpose called secure distributed Gram matrix multiplication (SDGMM). It can leverage the advantages of computing a Gram matrix instead of a regular matrix product.
翻译:矩阵Gram矩阵$A美元的定义是$A_T$(或$A_T\!A$),计算Gram矩阵值在许多应用中是一项重要操作,例如,以最小方位法进行线性回归,其中明确的解决方案公式包括数据矩阵的Gram矩阵。可以使用安全的分布式矩阵乘法(SDMM)来利用工人服务器的帮助计算两个矩阵的产物。如果使用SDMMM计算一个Gram矩阵值,则数据矩阵值需要两次编码,这会造成不必要的通信成本。我们为此提出了一个新的方案,即安全分布式矩阵乘法(SDGMMM)。它可以利用计算Gram矩阵值而不是常规矩阵产品的优势。</s>