The paper describes the work that has been submitted to the 5th workshop on Challenges and Applications of Automated Extraction of socio-political events from text (CASE 2022). The work is associated with Subtask 1 of Shared Task 3 that aims to detect causality in protest news corpus. The authors used different large language models with customized cross-entropy loss functions that exploit annotation information. The experiments showed that bert-based-uncased with refined cross-entropy outperformed the others, achieving a F1 score of 0.8501 on the Causal News Corpus dataset.
翻译:本文介绍了提交给关于从文本中自动提取社会政治事件的挑战和应用的第5次讲习班的工作(CASE 2022),该工作与共同任务3的分任务1有关,该分任务旨在查明抗议新闻材料中的因果关系,作者使用不同的大语言模型,这些大语言模型具有因地制宜的跨热带损失功能,利用注解信息,实验显示,以精细的跨热带事件为主的未设案例优于其他案例,在Causal News Corpus数据集中达到了0.8501的F1分。