We examine probabilistic forecasts for battleground states in the 2020 US presidential election, using daily data from two sources over seven months: a model published by The Economist, and prices from the PredictIt exchange. We find systematic differences in accuracy over time, with markets performing better several months before the election, and the model performing better as the election approached. A simple average of the two forecasts performs better than either one of them overall, even though no average can outperform both component forecasts for any given state-date pair. This effect arises because the model and the market make different kinds of errors in different states: the model was confidently wrong in some cases, while the market was excessively uncertain in others. We conclude that there is value in using hybrid forecasting methods, and propose a market design that incorporates model forecasts via a trading bot to generate synthetic predictions. We also propose and conduct a profitability test that can be used as a novel criterion for the evaluation of forecasting performance.
翻译:在2020年美国总统大选中,我们利用来自两个来源的七个月内的每日数据,对2020年美国总统大选中的战场状态进行概率预测:由《经济学家》出版的模型,以及来自“预测”交换的价格。我们发现,随着时间推移,在准确性方面存在着系统性差异,市场在选举前几个月表现更好,而模型在选举临近时表现更好。两种预测的简单平均表现优于其中之一,尽管没有任何平均数能够超过任一州一对的组合预测。这种效果之所以产生,是因为模型和市场在不同的国家造成不同种类的错误:在某些情况下,模型是自信错误的,而在另一些国家,市场则过于不确定。我们得出结论,使用混合预测方法是有价值的,我们提出一个市场设计,通过交易机器人进行模型预测,以产生合成预测。我们还提议并进行利润测试,作为评估预测业绩的新标准。