In computational PDE-based inverse problems, a finite amount of data is collected to infer unknown parameters in the PDE. In order to obtain accurate inferences, the collected data must be informative about the unknown parameters. How to decide which data is most informative and how to efficiently sample it, is the notoriously challenging task of optimal experimental design (OED). In this context, the best, and often infeasible, scenario is when the full input-to-output (ItO) map, i.e., an infinite amount of data, is available: This is the typical setting in many theoretical inverse problems, which is used to guarantee the unique parameter reconstruction. These two different settings have created a gap between computational and theoretical inverse problems. In this manuscript we aim to bridge this gap while circumventing the OED task. This is achieved by exploiting the structures of the ItO data from the underlying inverse problem, using the electrical impedance tomography (EIT) problem as an example. We leverage the rank-structure of the EIT model, and formulate the discretized ItO map, as an H-matrix. This suggests that one can recover the full ItO matrix, with high probability, from a subset of its entries sampled following the rank structure: The data in the diagonal blocks is informative thus fully sampled, while data in the off-diagonal blocks can be sub-sampled. This recovered ItO matrix is then utilized to represent the full ItO map, allowing us to connect with the problem in the theoretical setting where the unique reconstruction is guaranteed. This strategy achieves two goals: I) it bridges the gap between the settings for the numerical and theoretical inverse problems and II) it improves the quality of computational inverse solutions. We detail the theory for the EIT model, and provide numerical verification to both EIT and optical tomography problems
翻译:在基于 PDE 的计算反向问题中, 收集了一定数量的数据, 以推断PDE 中未知的参数。 为了获得准确的推断, 收集到的数据必须是关于未知参数的信息。 如何决定哪些数据信息最为丰富, 以及如何高效地取样这些数据, 是最佳实验设计( OED) 的臭名昭著的挑战性任务 。 在这方面, 最佳且往往是不可行的假设是, 完全输入到产出( ITO) 的地图, 即无限量的数据 : 这是许多理论反向问题的典型设置, 用来保证独特的参数重建。 这两个不同的设置造成了计算和理论反向的参数问题。 在这个手稿中, 我们的目标是在绕过 OEEDD任务时缩小这一差距。 利用ITO 数据结构, 利用电阻断断断断面( EIT) 问题, 我们利用经济模型的等级结构, 并绘制离析的 IMO 地图, 用来保证唯一的参数重建目标 。 这两种不同的设置是 HATO 。 因此, IMB 将数据输入 的 和 QO 。