Current approaches to design flood-sensitive infrastructure typically assume a stationary rainfall distribution and neglect many uncertainties. These assumptions are inconsistent with observations that suggest intensifying extreme precipitation events and the uncertainties surrounding projections of the coupled natural-human systems. Here we show that assuming climate stationarity and neglecting deep uncertainties can drastically underestimate flood risks and lead to poor infrastructure design choices. We find that climate uncertainty dominates the socioeconomic and engineering uncertainties that impact the hydraulic reliability in stormwater drainage systems. We quantify the upfront costs needed to achieve higher hydraulic reliability and robustness against the deep uncertainties surrounding projections of rainfall, surface runoff characteristics, and infrastructure lifetime. Depending on the location, we find that adding safety factors of 1.4 to 1.7 to the standard stormwater pipe design guidance produces robust performance to the considered deep uncertainties.


翻译:目前设计防洪基础设施的方法通常假定降雨量分布不固定,忽视许多不确定因素。这些假设与表明极端降水事件加剧以及自然-人类系统相结合的预测的不确定性的意见不一致。我们在这里表明,假设气候不稳和忽视深刻的不确定性,可能大大低估洪水风险,导致基础设施设计选择不善。我们发现,气候不确定性主导着影响暴雨排水系统水力可靠性的社会经济和工程不确定性。我们量化了实现更高的水力可靠性和稳健性以抵御降雨预测、地表径流特点和基础设施寿命期的深刻不确定性所需的前期成本。我们发现,根据地点,标准暴雨管设计指南增加1.4至1.7的安全系数,可以产生对深层不确定性的有力表现。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员