In this paper, we propose a novel joint intelligent trajectory design and resource allocation algorithm based on user's mobility and their requested services for unmanned aerial vehicles (UAVs) assisted networks, where UAVs act as nodes of a network function virtualization (NFV) enabled network. Our objective is to maximize energy efficiency and minimize the average delay on all services by allocating the limited radio and NFV resources. In addition, due to the traffic conditions and mobility of users, we let some Virtual Network Functions (VNFs) to migrate from their current locations to other locations to satisfy the Quality of Service requirements. We formulate our problem to find near-optimal locations of UAVs, transmit power, subcarrier assignment, placement, and scheduling the requested service's functions over the UAVs and perform suitable VNF migration. Then we propose a novel Hierarchical Hybrid Continuous and Discrete Action (HHCDA) deep reinforcement learning method to solve our problem. Finally, the convergence and computational complexity of the proposed algorithm and its performance analyzed for different parameters. Simulation results show that our proposed HHCDA method decreases the request reject rate and average delay by 31.5% and 20% and increases the energy efficiency by 40% compared to DDPG method.
翻译:在本文中,我们根据用户的机动性及其要求的无人航空飞行器(无人飞行器)辅助网络服务(无人航空飞行器作为网络功能虚拟化(NFV)启用网络的节点,提出了一个新的智能联合轨迹设计和资源分配算法。我们的目标是通过分配有限的无线电和NFV资源,最大限度地提高能源效率,最大限度地减少所有服务的平均延迟,通过分配有限的无线电和NFV资源,最大限度地实现能源效率,最大限度地减少所有服务的平均延迟,此外,由于用户的交通条件和流动性,我们还允许一些虚拟网络功能(VNFs)从现有地点迁移到其他地点,以满足服务质量要求。我们提出问题,寻找无人航空飞行器的近最佳地点,传输电力,分电、分货分派、安置和安排所请求服务功能的网络节点,作为网络功能虚拟化的网络功能。我们的目标是通过分配有限的无线电和NFNF迁移资源,最大限度地提高能效,最大限度地减少所有服务请求的升级、连续和分立行动(HHHCDA)的深度强化学习方法,以解决我们的问题。最后,拟议算法的趋同和计算复杂程度及其业绩分析不同参数分析。模拟结果显示,我们提议的HHHCHDDDDA方法降低了40%和平均