This technical note describes the recent updates of Graphormer, including architecture design modifications, and the adaption to 3D molecular dynamics simulation. With these simple modifications, Graphormer could attain better results on large-scale molecular modeling datasets than the vanilla one, and the performance gain could be consistently obtained on 2D and 3D molecular graph modeling tasks. In addition, we show that with a global receptive field and an adaptive aggregation strategy, Graphormer is more powerful than classic message-passing-based GNNs. Empirically, Graphormer could achieve much less MAE than the originally reported results on the PCQM4M quantum chemistry dataset used in KDD Cup 2021. In the meanwhile, it greatly outperforms the competitors in the recent Open Catalyst Challenge, which is a competition track on NeurIPS 2021 workshop, and aims to model the catalyst-adsorbate reaction system with advanced AI models. All codes could be found at https://github.com/Microsoft/Graphormer.


翻译:本技术说明描述了石墨的最新更新,包括建筑设计修改和对3D分子动态模拟的调整。有了这些简单的修改,石墨可以在大型分子模型数据集方面比香草模型数据集取得比香草模型数据集更好的结果,并且可以一致地在2D和3D分子图示模型任务上取得绩效收益。此外,我们表明,有了全球可接受字段和适应性聚合战略,石墨比经典的基于信息传递的GNNS更强大。 生动地说,石墨与最初报告的PCQM4M 量化学数据集相比,取得的结果远低于KDDS Cup 2021使用的PCQM4M量化学数据集。与此同时,它大大优于最近的Open Cartalyst 挑战中的竞争对手,这是NeurIPS 2021研讨会的竞争轨迹,目的是用先进的AI模型模拟催化剂-adorbate反应系统。所有代码都可以在 https://github.com/ Microsoft/Graphormer上找到。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
ArXiv2021 | Customized Graph Neural Networks
图与推荐
1+阅读 · 2021年12月27日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员