In the recent past, there has been a growing interest in Neural-Symbolic Integration frameworks, i.e., hybrid systems that integrate connectionist and symbolic approaches to obtain the best of both worlds. In a previous work, we proposed KENN (Knowledge Enhanced Neural Networks), a Neural-Symbolic architecture that injects prior logical knowledge into a neural network by adding a new final layer which modifies the initial predictions accordingly to the knowledge. Among the advantages of this strategy, there is the inclusion of clause weights, learnable parameters that represent the strength of the clauses, meaning that the model can learn the impact of each clause on the final predictions. As a special case, if the training data contradicts a constraint, KENN learns to ignore it, making the system robust to the presence of wrong knowledge. In this paper, we propose an extension of KENN for relational data. To evaluate this new extension, we tested it with different learning configurations on Citeseer, a standard dataset for Collective Classification. The results show that KENN is capable of increasing the performances of the underlying neural network even in the presence relational data, outperforming other two notable methods that combine learning with logic.
翻译:最近,人们日益关注神经-双曲融合框架,即结合连接和象征性方法的混合系统,以获得两个世界的最佳结果。在以前的一项工作中,我们建议KENN(知识强化神经网络),这是一个神经-双曲结构,通过增加一个新的最后一层,根据知识对初始预测进行相应的修改,将逻辑知识注入神经网络。这一战略的优点之一是,增加了条款权重和可学习的参数,这些参数代表了条款的力度,这意味着模型可以了解每个条款对最后预测的影响。作为一个特殊的例子,如果培训数据与限制相矛盾,KENN学会忽略它,使系统对错误知识的存在产生强大的影响。在本文中,我们建议扩大KENN用于关系数据。为了评估这一新扩展,我们用Citeseer的不同学习配置测试了它,这是集体分类的标准数据集。结果显示,KENN能够增加每个条款对最终预测的影响。作为一个特例,如果培训数据数据与限制相矛盾,KENN能够忽略它,使系统与错误知识的存在更加强大。我们提议扩大KENN对关系的数据网络进行不同的学习。