While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, a recent trend in AutoML is to focus on neural architecture search. In this paper, we introduce Auto-PyTorch, which brings the best of these two worlds together by jointly and robustly optimizing the architecture of networks and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch achieves state-of-the-art performance on several tabular benchmarks by combining multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs) and common baselines for tabular data. To thoroughly study our assumptions on how to design such an AutoDL system, we additionally introduce a new benchmark on learning curves for DNNs, dubbed LCBench, and run extensive ablation studies of the full Auto-PyTorch on typical AutoML benchmarks, eventually showing that Auto-PyTorch performs better than several state-of-the-art competitors on average.
翻译:虽然早期的AutoML框架侧重于优化传统的ML管道及其超参数,但AutoML最近的一个趋势是侧重于神经结构搜索。在本文中,我们引入了Auto-PyTorrch,通过联合和大力优化网络结构和培训超参数结构,使这两个世界的最好部分聚集在一起,使网络结构和培训超参数能够完全自动深层学习(AutoDL)。Auto-PyToranch在一些表格基准上实现了最先进的业绩,将多纤维优化与组合建设相结合,以启动和整合深层神经网络(DNNN)和表格数据共同基线。为了彻底研究我们关于如何设计AutoDL系统的假设,我们进一步引入了关于DNS学习曲线的新基准,调制LCBench,并对典型的AutoML基准的全Aut-PyTorch进行了广泛的模拟研究,最终显示,Aut-PyTorch的表现优于平均数名州竞争者。