This paper focuses on the inverse elastic impedance and the geometry problem by a Cauchy data pair on the access part of the boundary in a two-dimensional case. Through the decomposition of the displacement, the problem is transform the solution of into a coupled boundary value problem that involves two scalar Helmholtz equations. Firstly, a uniqueness result is given, and a non-iterative algorithm is proposed to solve the data completion problem using a Cauchy data pair on a known part of the solution domain's boundary. Next, we introduce a Newton-type iterative method for reconstructing the boundary and the impedance function using the completion data on the unknown boundary, which is governed by a specific type of boundary conditions. Finally, we provide several examples to demonstrate the effectiveness and accuracy of the proposed method.
翻译:暂无翻译