This paper describes how 3D XPoint memory arrays can be used as in-memory computing accelerators. We first show that thresholded matrix-vector multiplication (TMVM), the fundamental computational kernel in many applications including machine learning, can be implemented within a 3D XPoint array without requiring data to leave the array for processing. Using the implementation of TMVM, we then discuss the implementation of a binary neural inference engine. We discuss the application of the core concept to address issues such as system scalability, where we connect multiple 3D XPoint arrays, and power integrity, where we analyze the parasitic effects of metal lines on noise margins. To assure power integrity within the 3D XPoint array during this implementation, we carefully analyze the parasitic effects of metal lines on the accuracy of the implementations. We quantify the impact of parasitics on limiting the size and configuration of a 3D XPoint array, and estimate the maximum acceptable size of a 3D XPoint subarray.
翻译:本文描述3D XPoint 内存阵列如何用作模拟计算加速器。 我们首先显示, 包括机器学习在内的许多应用中的基本计算内核, 即临界矩阵矢量倍增(TMVM), 可以在一个 3D XPoint 阵列内实施, 而不需要数据即可离开阵列进行处理 。 使用 TMVM, 我们然后讨论二进制神经推断引擎的实施 。 我们讨论核心概念的应用, 以解决系统可扩缩性, 将多个 3D XPoint 阵列连接在一起, 以及 电力完整性, 我们分析金属线对噪声边际的寄生效应 。 为确保3D XPoint 阵列内的电力完整性, 我们仔细分析金属线对执行的准确性产生的寄生效应 。 我们量化寄生物对限制 3D XPoint 阵列的大小和配置的影响, 并估计 3D XPoint 子的最大可接受尺寸 。