The central challenges in missing data models concern the identifiability of two distributions: the target law and the full law. The target law refers to the joint distribution of the data variables, whereas the full law refers to the joint distribution of the data variables and their corresponding response indicators. However, the relationship between the identifiability of these two distributions and the feasibility of multiple imputation has not been clearly established. We show that imputations can be drawn from the correct conditional distributions for all possible missing data patterns if and only if the full law is identifiable. This result implies that standard multiple imputation methods -- which keep observed values unchanged and replace missing values with imputed values -- are invalid when the target law is identifiable but the full law is not. We demonstrate that alternative imputation strategies, in which certain observed values are also imputed, can enable the estimation of the target law in such cases.


翻译:缺失数据模型中的核心挑战涉及两个分布的可识别性:目标分布与完整分布。目标分布指数据变量的联合分布,而完整分布指数据变量及其对应响应指示符的联合分布。然而,这两个分布的可识别性与多重插补的可行性之间的关系尚未得到明确阐明。我们证明,当且仅当完整分布可识别时,才能为所有可能的缺失数据模式从正确的条件分布中抽取插补值。这一结果表明,当目标分布可识别而完整分布不可识别时,标准多重插补方法——即保持观测值不变并用插补值替换缺失值——是无效的。我们进一步证明,通过采用替代插补策略(即对部分观测值也进行插补),可以在这种情况下实现对目标分布的估计。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年5月1日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
漫谈机器阅读理解之Facebook提出的DrQA系统
深度学习每日摘要
18+阅读 · 2017年11月19日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年5月1日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
漫谈机器阅读理解之Facebook提出的DrQA系统
深度学习每日摘要
18+阅读 · 2017年11月19日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员