We examine three non-negative matrix factorization techniques; L2-norm, L1-norm, and L2,1-norm. Our aim is to establish the performance of these different approaches, and their robustness in real-world applications such as feature selection while managing computational complexity, sensitivity to noise and more. We thoroughly examine each approach from a theoretical perspective, and examine the performance of each using a series of experiments drawing on both the ORL and YaleB datasets. We examine the Relative Reconstruction Errors (RRE), Average Accuracy and Normalized Mutual Information (NMI) as criteria under a range of simulated noise scenarios.
翻译:我们考察了三种非负矩阵系数化技术:L2-norm、L1-norm和L2,1-norm。我们的目标是确定这些不同方法的性能,以及它们在实际应用中的稳健性,例如特征选择,同时管理计算的复杂性、对噪音的敏感性等等。我们从理论角度彻底审视了每一种方法,并利用ORL和耶鲁博的数据集进行了一系列实验,对每一种方法的性能进行了研究。我们研究了相对重建错误、平均准确性和标准化的相互信息,作为一系列模拟噪音情景下的标准。