The algebraic stability theorem for pointwise finite dimensional (p.f.d.) $\mathbb{R}$-persistence modules is a central result in the theory of stability for persistence modules. We present a stability theorem for $n$-dimensional rectangle decomposable p.f.d. persistence modules up to a constant $(2n-1)$ that is a generalization of the algebraic stability theorem. We give an example to show that the bound cannot be improved for $n=2$. The same technique is then applied to free $n$-dimensional modules and what we call triangle decomposable modules, where we obtain smaller constants. The result for triangle decomposable modules combined with work by Botnan and Lesnick proves a version of the algebraic stability theorem for zigzag modules and the persistent homology of Reeb graphs. We also prove slightly weaker versions of the results for interval decomposable modules that are not assumed to be p.f.d. This work grew out of my master's degree at the Department of Mathematical Sciences at NTNU.
翻译:用于点定维( p.f.d.) $\mathbb{R} $- pististence 模块的代数稳定性理论是持久性模块稳定性理论的核心结果。 我们为美元维度模块提供了一个稳定理论, 用于美元维度的矩形脱混, p.f.d. 恒定模块, 直至恒定 $( 2n-1), 这是对代数稳定性理论的概括性。 我们举一个例子, 以显示无法改进 $=2 美元的约束。 然后, 同样的技术被应用到免费的美元维基模块, 以及我们称之为三角的可分解模块, 以获得较小的常数。 三角分解模块的稳定性理论, 结合 Botnan 和 Lennick 的工作, 证明了 zigzag 模块和 Reeb 图形的持久性同质学的代数。 我们还证明, 在假定不为 p.f.d. 的间隔段可解的模块中, 其结果的版本稍弱一些。 这项工作在数学部的磁部内, 将发展出。