The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits their expressiveness, contributing to well-known issues such as over-smoothing. To overcome this limitation, we propose the first globally consistent anisotropic kernels for GNNs, allowing for graph convolutions that are defined according to topologicaly-derived directional flows. First, by defining a vector field in the graph, we develop a method of applying directional derivatives and smoothing by projecting node-specific messages into the field. Then, we propose the use of the Laplacian eigenvectors as such vector field. We show that the method generalizes CNNs on an $n$-dimensional grid and is provably more discriminative than standard GNNs regarding the Weisfeiler-Lehman 1-WL test. We evaluate our method on different standard benchmarks and see a relative error reduction of 8% on the CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset, and a relative increase in precision of 1.6% on the MolPCBA dataset. An important outcome of this work is that it enables graph networks to embed directions in an unsupervised way, thus allowing a better representation of the anisotropic features in different physical or biological problems.
翻译:在图形神经网络中缺乏厌食性内核,这极大地限制了它们的表达性,助长了诸如超移动等众所周知的问题。为了克服这一限制,我们提议为GNN建立第一个全球一致的厌食性内核,允许根据地形取方向流定义的图变。首先,通过在图表中定义一个矢量字段,我们开发了一种应用定向衍生物的方法,并通过将特定节点信息投射到现场来平滑。然后,我们提议使用Laplacian 源源代码作为矢量字段。我们表明,该方法将CNN放在一个美元-维基网上,比标准GNNNNG在Weisfeiler-Lehman 1-WLL测试方面更具歧视性。我们根据不同的标准基准评估了我们的方法,在CIFAR10图形数据集中相对减少了8%,在分子ZINC数据集中则减少了11%-32%。我们提议使用LAPLEE为矢量数据元的源代码字段。我们表明,该方法将CNNGN用于一个以1.6为通用的物理结构特征的相对增加的方法,因此使得BEB结果的精确度网络成为了1.的结果。