Local field potentials (LFPs) are signals that measure electrical activity in localized cortical regions from multiple implanted tetrodes in the human or animal brain. They can be treated as multivariate functional data (i.e., curves observed at many tetrodes spread across a patch on the surface of the cortex). Most multivariate functional data contain both global features (which are shared in common to all curves) as well isolated features (common only to a small subset of curves). The goal is this paper is to develop a procedure for capturing this common features. We propose a novel tree-structured functional principal component (filt-fPC) model through low-dimensional functional representation, specifically via filtration. A popular approach to dimension reduction of functional data is functional principal components analysis (fPCA). Ordinary fPCA can only capture the major information of one population, but fail to reveal the similarity of variation pattern of different groups, which is potentially related to functional connectivity of brain. One major advantage of the proposed filt-fPC method is the ability to extracting components that are common to multiple groups, and meanwhile preserves the idiosyncratic individual features of different groups, leading to a parsimonious and interpretable low dimensional representation of multivariate functional data. Another advantage is that the extracted functional principal components satisfy the orthonormal property for each set, making filt-fPC scores easy to be obtained. The proposed filt-fPC method was employed to study the impact of a shock (induced stroke) on the functional organization structure of the rat brain. Finally we point to further directions as this filtration idea can also be generalized to other functional statistical models, such as functional regression, classification and functional times series models.
翻译:本地字段潜力( LFPs) 是用来测量局部地区从人类或动物大脑中多个植入的电流中测量本地皮层区域的电气活动的信号。 我们建议通过低维功能表示方式, 特别是过滤方式, 将电气活动作为多变量功能功能数据模型( 在许多电流中观测到的曲线, 分布在皮层表面的一个小片处) 。 多数多变量功能数据包含全球特征( 在所有曲线中共享) 以及孤立特征( 仅与曲线的一个小小小块相通 ) 。 本文的目的是开发一个程序, 捕捉到这一共同特征。 我们建议通过低维功能表示方式, 将新的树形结构主要功能组成部分( filt-fPC) 视为多维功能性数据模型( fPC), 普通的 FPCA 只能捕捉到一个人群的主要信息, 但无法揭示不同组群的变异模式的相似性, 这与大脑的功能连接性能连接。 拟议的过滤法- frealforal 方法的一个主要优势是提取功能结构结构结构的功能结构, 将功能结构的功能结构的精度 保存到每个功能结构的精度, 向不同的功能结构的精度 。 向不同的功能结构的精度 向不同的结构的精度, 向不同的结构 向不同的结构 向不同的结构 向不同的变异性向的精度 向的精度, 的精度 的精度, 的精度 的精度 的精度 向的精度 的精度 的精度 。