Metro operation management relies on accurate predictions of passenger flow in the future. This study begins by integrating cross-city (including source and target city) knowledge and developing a short-term passenger flow prediction framework (METcross) for the metro. Firstly, we propose a basic framework for modeling cross-city metro passenger flow prediction from the perspectives of data fusion and transfer learning. Secondly, METcross framework is designed to use both static and dynamic covariates as inputs, including economy and weather, that help characterize station passenger flow features. This framework consists of two steps: pre-training on the source city and fine-tuning on the target city. During pre-training, data from the source city trains the feature extraction and passenger flow prediction models. Fine-tuning on the target city involves using the source city's trained model as the initial parameter and fusing the feature embeddings of both cities to obtain the passenger flow prediction results. Finally, we tested the basic prediction framework and METcross framework on the metro networks of Wuxi and Chongqing to experimentally analyze their efficacy. Results indicate that the METcross framework performs better than the basic framework and can reduce the Mean Absolute Error and Root Mean Squared Error by 22.35% and 26.18%, respectively, compared to single-city prediction models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Beginner's All-purpose Symbolic Instruction Code(初学者通用的符号指令代码),刚开始被作者写做 BASIC,后来被微软广泛地叫做 Basic 。
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员