In this article, we propose and investigate ML group explainers in a general game-theoretic setting with the focus on coalitional game values and games based on the conditional and marginal expectation of an ML model. The conditional game takes into account the joint distribution of the predictors, while the marginal game depends on the structure of the model. The objective of the article is to unify the two points of view under predictor dependencies and to reduce the complexity of group explanations. To achieve this, we propose a feature grouping technique that employs an information-theoretic measure of dependence and design appropriate groups explainers. Furthermore, in the context of coalitional game values with a two-step formulation, we introduce a theoretical scheme that generates recursive coalitional game values under a partition tree structure and investigate the properties of the corresponding group explainers.
翻译:在此篇文章中, 我们提议并调查在一般游戏理论环境中的 ML 群落解释者, 重点是基于 ML 模型的有条件和边际期望的联盟式游戏价值和游戏。 有条件游戏考虑到了预测者的共同分布, 而边际游戏则取决于模型的结构。 文章的目的是在预测者依赖性下统一两种观点, 并降低群落解释的复杂性。 为了实现这一点, 我们提议了一种特征组合技术, 采用信息理论性的依赖性计量, 并设计出合适的群落解释者。 此外, 在以两步配方公式的联盟式游戏价值的背景下, 我们引入了一个理论计划, 在分割树结构下生成循环的联盟式游戏价值, 并调查相应的群落解释者特性 。