Inspection and maintenance are two crucial aspects of industrial pipeline plants. While robotics has made tremendous progress in the mechanic design of in-pipe inspection robots, the autonomous control of such robots is still a big open challenge due to the high number of actuators and the complex manoeuvres required. To address this problem, we investigate the usage of Deep Reinforcement Learning for achieving autonomous navigation of in-pipe robots in pipeline networks with complex topologies. Moreover, we introduce a hierarchical policy decomposition based on Hierarchical Reinforcement Learning to learn robust high-level navigation skills. We show that the hierarchical structure introduced in the policy is fundamental for solving the navigation task through pipes and necessary for achieving navigation performances superior to human-level control.
翻译:虽然机器人在管道内检查机器人的机械设计方面取得了巨大进展,但是,由于触发器数量之多和需要的复杂操作,自动控制这类机器人仍是一个巨大的公开挑战。为了解决这一问题,我们调查利用深强化学习实现管道内管道机器人在具有复杂地形的管道网络中自主导航的使用情况。此外,我们还根据分级强化学习引入了等级政策分解,以学习强大的高级导航技能。我们表明,该政策中引入的等级结构对于通过管道解决导航任务至关重要,对于实现高于人类控制的导航性能也是必要的。