We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn three variants of a variational latent trajectory model (TVAE). While the first two variants (TVAE-C and TVAE-R) model strict periodic movements of the heart, the third (TVAE-S) is more general and allows shifts in the spatial representation throughout the video. All models are trained on the healthy samples of a novel in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shone-complex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders when detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method enables interpretable explanations of its output through heatmaps highlighting the regions corresponding to anomalous heart structures.
翻译:我们建议对回声心血管视频采用新的异常检测方法。引入的方法利用心脏周期周期的周期性来学习变幻潜轨模型(TVAE)的三个变体。前两个变体(TVAE-C和TVAE-R)模型严格定期心脏运动,而第三种变体(TVAE-S)则比较一般,允许在整个视频中空间代表制的变化。所有模型都对婴儿回声心血管视频的新式内部数据集的健康样本进行了培训,该数据集由多个室视图组成,以学习健康人群之前的规范。在推断过程中,对基于外表的异常现象进行了最大程度的检测,以探测出处样本。拟议方法可靠地识别了严重的先天性心功能缺陷,如Ebstein's Anomaly 或Shone-complex等。此外,所有模型在探测肺部高血压和右心血管变异变相时,都比MAP的异常检测效果优。最后,我们证明拟议方法能够通过热光谱区域显示其输出结构的解释性。