Racialized economic segregation, a key metric that simultaneously accounts for spatial, social and income polarization, has been linked to adverse health outcomes, including morbidity and mortality; however, statistical methods for measuring the association between racialized economic segregation and health outcomes are not well-developed and are usually studied at the individual level. In this paper we propose a two-stage Bayesian statistical framework that provides a broad, flexible approach to studying the spatially varying association between premature mortality and racialized economic segregation, while accounting for neighborhood-level latent health factors across US counties. We apply our method by using data from three sources: (1) the CDC WONDER, (2) the County Health Rankings, and (3) the Public Health Disparities Geocoding Project. Findings from our study show that the posterior estimates of latent health factors clearly demonstrate geographical patterning across US counties. Additionally, our results highlight the importance of accounting for the presence of spatial autocorrelation in racialized economic segregation measures, in health equity focused settings.


翻译:经济种族隔离是一项同时考虑空间、社会和收入极化的关键指标。过去,它与不良健康结果,包括发病率和死亡率相联系;然而,测量经济种族隔离和健康结果之间关联的统计方法尚未得到充分发展,而且通常是以个人层次进行研究。本文提出了一种包括两个阶段的贝叶斯统计框架,可以提供一种广泛、灵活的方法来研究美国县级间的早逝率和经济种族隔离之间的空间变异关系,并考虑到潜在的邻域层面健康因素。我们使用三个数据源来应用这种方法:(1)CDC WONDER、(2)县级健康排名和(3)公共卫生不平等地理编码项目。我们的研究结果显示,潜在健康因素的后验估计清晰地展示出在美国县级间的地理模式。此外,我们的研究结果还强调了在健康公平性方面考虑到经济种族隔离措施中空间自相关的存在的重要性。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
14+阅读 · 2021年5月21日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员