In this paper, we introduce and analyze a mixed formulation for the Oseen eigenvalue problem by introducing the pseudostress tensor as a new unknown, allowing us to eliminate the fluid pressure. The well-posedness of the solution operator is established using a fixed-point argument. For the numerical analysis, we use the tensorial versions of Raviart-Thomas and Brezzi-Douglas-Marini elements to approximate the pseudostress, and piecewise polynomials for the velocity. Convergence and a priori error estimates are derived based on compact operator theory. We present a series of numerical tests in two and three dimensions to confirm the theoretical findings.
翻译:暂无翻译