In this work, we define three composite matrices derived from group rings. We employ these composite matrices to create generator matrices of the form [In | {\Omega}(v)], where In is the identity matrix and {\Omega}(v) is a composite matrix and search for binary self-dual codes with parameters [36, 18, 6 or 8]. We next lift these codes over the ring R1 = F2 + uF2 to obtain codes whose binary images are self-dual codes with parameters [72,36,12]. Many of these codes turn out to have weight enumerators with parameters that were not known in the literature before. In particular, we find 30 new Type I binary self-dual codes with parameters [72, 36, 12].
翻译:在这项工作中,我们定义了从组环中得出的三个复合矩阵。我们使用这些复合矩阵来创建[{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}{{{{{{{{{{{{{}}}}}}}}}}}的生成器矩阵,其中身份矩阵和{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{}}}}}}}}}}}{{{{{{{{{{{{{{}}}}}}}}}}}}}{}}}}}}}}}}}}}。我们接下来在R1=F2=F2+uF2的环上提升这些代码,以获得二元图象为参数[72、36、12]的二元码的二元码。这些码。这些代码中,有许多重量计数的计算器内有文献中以前不为参数的参数,特别是30种二元二元二元二元码。我们发现30个新的二元码[72、36、36、12]。