Knowledge Graphs (KG) act as a great tool for holding distilled information from large natural language text corpora. The problem of natural language querying over knowledge graphs is essential for the human consumption of this information. This problem is typically addressed by converting the natural language query to a structured query and then firing the structured query on the KG. Direct answering models over knowledge graphs in literature are very few. The query conversion models and direct models both require specific training data pertaining to the domain of the knowledge graph. In this work, we convert the problem of natural language querying over knowledge graphs to an inference problem over premise-hypothesis pairs. Using trained deep learning models for the converted proxy inferencing problem, we provide the solution for the original natural language querying problem. Our method achieves over 90% accuracy on MetaQA dataset, beating the existing state-of-the-art. We also propose a model for inferencing called Hierarchical Recurrent Path Encoder(HRPE). The inferencing models can be fine-tuned to be used across domains with less training data. Our approach does not require large domain-specific training data for querying on new knowledge graphs from different domains.
翻译:知识图( KG) 是一个极好的工具, 用来保存来自大型自然语言文本的精密信息。 自然语言对知识图的询问问题对于人类使用这些信息至关重要。 这个问题通常通过将自然语言查询转换成结构化查询, 然后在 KG 上发布结构化查询来加以解决。 直接回答模型相对于文献中知识图只有极少数。 查询转换模型和直接模型都需要与知识图领域相关的具体培训数据。 在这项工作中, 我们将自然语言对知识图的查询问题转换为对前置合合比对的推论问题。 使用经过训练的深层次学习模型来解决转换代用代理推论问题, 我们的方法为原始自然语言查询问题提供了解决方案。 我们的方法在MetaQA数据集上实现了90%的精确度, 击败了现有的状态图。 我们还建议了一个称为“ 高度的经常性路径( HRPE) ” ( HRPE) 的推论模型。 推论模型可以精确地调整, 以便在不同域中使用较少培训的数据进行新的查询。 我们的方法不需要大域域特定数据。