The Reeb space is a fundamental data structure in computational topology that represents the fiber topology of a multi-field (or multiple scalar fields), extending the level set topology of a scalar field. Efficient algorithms have been designed for computing Reeb graphs, however, computing correct Reeb spaces for PL bivariate fields, is a challenging open problem. There are only a few implementable algorithms in the literature for computing Reeb space or its approximation via range quantization or by computing a Jacobi fiber surface which are computationally expensive or have correctness issues, i.e., the computed Reeb space may not be topologically equivalent or homeomorphic to the actual Reeb space. In the current paper, we propose a novel algorithm for fast and correct computation of the Reeb space corresponding to a generic PL bivariate field defined on a triangulation $\mathbb{M}$ of a $3$-manifold without boundary, leveraging the fast algorithms for computing Reeb graphs in the literature. Our algorithm is based on the computation of a Multi-Dimensional Reeb Graph (MDRG) which is first proved to be homeomorphic with the Reeb space. For the correct computation of the MDRG, we compute the Jacobi set of the PL bivariate field and its projection into the Reeb space, called the Jacobi structure. Finally, the correct Reeb space is obtained by computing a net-like structure embedded in the Reeb space and then computing its $2$-sheets in the net-like structure. The time complexity of our algorithm is $\mathcal{O}(n^2 + n(c_{int})\log (n) + nc_L^2)$, where $n$ is the total number of simplices in $\mathbb{M}$, $c_{int}$ is the number of intersections of the projections of the non-adjacent Jacobi set edges on the range of the bivariate field and $c_L$ is the upper bound on the number of simplices in the link of an edge of $\mathbb{M}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员