Cybercrime is a growing threat to organizations and individuals worldwide, with criminals using increasingly sophisticated techniques to breach security systems and steal sensitive data. In recent years, machine learning, deep learning, and transfer learning techniques have emerged as promising tools for predicting cybercrime and preventing it before it occurs. This paper aims to provide a comprehensive survey of the latest advancements in cybercrime prediction using above mentioned techniques, highlighting the latest research related to each approach. For this purpose, we reviewed more than 150 research articles and discussed around 50 most recent and relevant research articles. We start the review by discussing some common methods used by cyber criminals and then focus on the latest machine learning techniques and deep learning techniques, such as recurrent and convolutional neural networks, which were effective in detecting anomalous behavior and identifying potential threats. We also discuss transfer learning, which allows models trained on one dataset to be adapted for use on another dataset, and then focus on active and reinforcement Learning as part of early-stage algorithmic research in cybercrime prediction. Finally, we discuss critical innovations, research gaps, and future research opportunities in Cybercrime prediction. Overall, this paper presents a holistic view of cutting-edge developments in cybercrime prediction, shedding light on the strengths and limitations of each method and equipping researchers and practitioners with essential insights, publicly available datasets, and resources necessary to develop efficient cybercrime prediction systems.


翻译:网络犯罪成为威胁全球组织和个人的日益增长的风险,犯罪分子使用越来越复杂的技术来突破安全系统并窃取敏感数据。近年来,机器学习、深度学习和转移学习技术已成为预测网络犯罪和在其发生之前防止的有应用潜力的工具。本文旨在提供关于上述技术在网络犯罪预测方面的最新进展的全面调查,重点介绍每种方法相关的最新研究。为此,我们审查了150多篇研究文章,并讨论了大约50篇最近和最相关的研究文章。我们开始探讨网络犯罪分子使用的一些常见方法,然后着重讨论最新的机器学习和深度学习技术,例如适用于检测异常行为和识别潜在威胁的循环神经网络和卷积神经网络。我们还讨论了转移学习,其允许在一个数据集上训练的模型适应于另一个数据集,然后着重于网络犯罪预测早期阶段算法研究的主动和强化学习。最后,我们讨论了关键的创新、研究空白和未来的研究机会。总的来说,本文提供了网络犯罪预测最新进展的整体视角,揭示了每种方法的优点和局限性,并为研究人员和从业人员提供了必要的洞见、公开可用的数据集和资源,以开发高效的网络犯罪预测系统。

0
下载
关闭预览

相关内容

是指行为人运用计算机技术,借助于网络对其系统或信息进行攻击,破坏或利用网络进行其他犯罪的总称。既包括行为人运用其编程,加密,解码技术或工具在网络上实施的犯罪,也包括行为人利用软件指令。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
126+阅读 · 2020年9月6日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员