Consider a multiple hypothesis testing setting in which only a small proportion of the measured features contain non-null effects. Under typical conditions, the log of the P-value associated with each feature is approximately a sparse mixture of chi-squared distributions, one of which is scaled and non-central. We characterize the asymptotic performance of global tests combining these P-values in terms of the chisquared mixture parameters: the scaling parameters controlling heteroscedasticity, the non-centrality parameter describing the effect size, and the parameter controlling the rarity of the non-null features. Specifically, in a phase space involving the last two parameters, we derive a region where all tests are asymptotically powerless. Outside of this region, the Berk-Jones and the Higher Criticism tests of these P-values have maximal power. Inference techniques based on the minimal P-value, false-discovery rate controlling, and Fisher's combination test have sub-optimal asymptotic performance. We provide various examples for recently studied signal detection models that fall under our setting as well as several new ones. Our perturbed log-chisquared P-values formulation seamlessly generalizes these models to their two-sample variant and heteroscedastic situations. The log-chisquared approximation for P-values under the alternative hypothesis is different from Bahadur's classical log-normal approximation. The latter turns out to be unsuitable for analyzing optimal detection in rare/weak feature models.


翻译:考虑一个多位假设测试设置, 测量的特性中只有一小部分含有非核效应。 在典型条件下, 与每个特性相关的P值日志大约是一个稀疏的奇二次分布混合体, 其中之一是缩放和非中央的。 我们用奇二次混合参数来描述这些P值结合的全球测试的无症状性能: 控制超度的缩放参数、 描述影响大小的非中央参数以及控制非核特征的稀释性的参数。 具体地说, 在涉及最后两个参数的阶段空间里, 我们得出一个所有测试都处于无症状性弱分布的区域。 在这个区域之外, Berk- Jones 和这些P值的高级Critictical测试具有最大性能。 基于最小P值的缩放值、 误差率控制以及 Fishercher的组合测试具有亚均匀性功能的亚优性。 我们为最近研究的信号检测模型提供了各种示例, 这些信号模型将在我们设定的平流度中以平整的平流值为正值的平流值为新。

0
下载
关闭预览

相关内容

【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
20+阅读 · 2021年1月27日
【2020新书】使用R和Python的高级BI分析,425页pdf
专知会员服务
33+阅读 · 2020年10月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Testing and estimation of clustered signals
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
20+阅读 · 2021年1月27日
【2020新书】使用R和Python的高级BI分析,425页pdf
专知会员服务
33+阅读 · 2020年10月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员