Containment, the key strategy in quickly halting an epidemic, requires rapid identification and quarantine of the infected individuals, determination of whom they have had close contact with in the previous days and weeks, and decontamination of locations the infected individual has visited. Achieving containment demands accurate and timely collection of the infected individual's location and contact history. Traditionally, this process is labor intensive, susceptible to memory errors, and fraught with privacy concerns. With the recent almost ubiquitous availability of smart phones, many people carry a tool which can be utilized to quickly identify an infected individual's contacts during an epidemic, such as the current 2019 novel Coronavirus crisis. Unfortunately, the very same first-generation contact tracing tools have been used to expand mass surveillance, limit individual freedoms and expose the most private details about individuals. We seek to outline the different technological approaches to mobile-phone based contact-tracing to date and elaborate on the opportunities and the risks that these technologies pose to individuals and societies. We describe advanced security enhancing approaches that can mitigate these risks and describe trade-offs one must make when developing and deploying any mass contact-tracing technology. With this paper, our aim is to continue to grow the conversation regarding contact-tracing for epidemic and pandemic containment and discuss opportunities to advance this space. We invite feedback and discussion.


翻译:遏制是迅速遏制流行病的关键战略,它要求迅速识别和隔离受感染者,确定他们在过去几天和几周里与谁接触密切,消除受感染者所访问的地点的污染。 实现遏制要求准确和及时地收集受感染者的位置和接触历史。 传统上,这一进程是劳动密集型的,容易记忆错误,充满隐私问题。 最近,智能电话几乎无处不在,许多人携带了一种工具,可以用来迅速识别感染者在流行病期间的接触,例如目前的2019新科罗纳病毒危机。 不幸的是,同样的第一代接触追踪工具被用来扩大大规模监控,限制个人自由,并披露最私人的个人信息。我们力求概述基于联系追踪日期的移动电话的不同技术方法,阐述这些技术给个人和社会带来的机会和风险。我们描述了能够减轻这些风险的先进的加强安全方法,并描述在开发和部署任何大规模接触追踪技术时必须作出的权衡。我们的目标就是利用这一第一代接触追踪工具来扩大大规模监控,我们的目的是继续推动有关接触和空间反馈的讨论。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
40+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员