Music, an integral part of our lives, which is not only a source of entertainment but plays an important role in mental well-being by impacting moods, emotions and other affective states. Music preferences and listening strategies have been shown to be associated with the psychological well-being of listeners including internalized symptomatology and depression. However, till date no studies exist that examine time-varying music consumption, in terms of acoustic content, and its association with users' well-being. In the current study, we aim at unearthing static and dynamic patterns prevalent in active listening behavior of individuals which may be used as indicators of risk for depression. Mental well-being scores and listening histories of 541 Last.fm users were examined. Static and dynamic acoustic and emotion-related features were extracted from each user's listening history and correlated with their mental well-being scores. Results revealed that individuals with greater depression risk resort to higher dependency on music with greater repetitiveness in their listening activity. Furthermore, the affinity of depressed individuals towards music that can be perceived as sad was found to be resistant to change over time. This study has large implications for future work in the area of assessing mental illness risk by exploiting digital footprints of users via online music streaming platforms.


翻译:音乐是我们生活中不可分割的一部分,音乐不仅是娱乐的源泉,而且通过影响情绪、情绪和其他情感状态,在心理健康中起着重要作用; 音乐偏好和听力策略与听众的心理健康有关,包括内化的症状学和抑郁症; 然而,迄今为止,还没有一项研究研究从声内容及其与用户福祉的关系方面审查时间变化的音乐消费及其与用户福祉的关系; 在本研究中,我们的目标是解开活跃的听觉行为中普遍存在的静态和动态模式,这些模式可能被用来作为抑郁症的风险指标; 审查了541 Last.fm使用者的心理健康评分和听觉史; 从每个用户的听觉历史中提取了静态和动态的声学和情感相关特征,并与他们的心理健康成绩相关; 研究结果显示,抑郁症患者在听力活动中可能更加依赖音乐; 此外,抑郁症患者对可被视为悲伤的音乐的亲近感与时间变化相抗。 这项研究对今后通过数字平台评估精神病风险的工作产生了巨大影响。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
74+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员