We present new exact and approximation algorithms for 0-1-Knapsack and Unbounded Knapsack: * Exact Algorithm for 0-1-Knapsack: 0-1-Knapsack has known algorithms running in time $\widetilde{O}(n + \min\{n OPT, n W, OPT^2, W^2\})$, where $n$ is the number of items, $W$ is the weight budget, and $OPT$ is the optimal profit. We present an algorithm running in time $\widetilde{O}(n + (W + OPT)^{1.5})$. This improves the running time in case $n,W,OPT$ are roughly equal. * Exact Algorithm for Unbounded Knapsack: Unbounded Knapsack has known algorithms running in time $\widetilde{O}(n + \min\{n \cdot p_{\max}, n \cdot w_{\max}, p_{\max}^2, w_{\max}^2\})$ [Axiotis, Tzamos '19, Jansen, Rohwedder '19, Chan, He '20], where $n$ is the number of items, $w_{\max}$ is the largest weight of any item, and $p_{\max}$ is the largest profit of any item. We present an algorithm running in time $\widetilde{O}(n + (p_{\max} + w_{\max})^{1.5})$, giving a similar improvement as for 0-1-Knapsack. * Approximating Unbounded Knapsack with Resource Augmentation: Unbounded Knapsack has a known FPTAS with running time $\widetilde{O}(\min\{n/\varepsilon, n + 1/\varepsilon^2\})$ [Jansen, Kraft '18]. We study weak approximation algorithms, which approximate the optimal profit but are allowed to overshoot the weight constraint. We present the first approximation scheme for Unbounded Knapsack in this setting, achieving running time $\widetilde{O}(n + 1/\varepsilon^{1.5})$. Our algorithms can be seen as reductions to Min-Plus-Convolution on monotone sequences with bounded entries. These structured instances of Min-Plus-Convolution can be solved in time $O(n^{1.5})$ [Chi,Duan,Xie,Zhang '22] (in contrast to the conjectured $n^{2-o(1)}$ lower bound for the general case).


翻译:我们为 0-1- Knapsack 和未受约束的 Knapsack 提供了新的精确和近似算法 : * 0-1- Knapsack 以时间运行的算法 : 0-1- Knapsack +\ min ⁇ OP, n W, OP2, 美元是项目的数量, 美元是重量预算, 美元是最佳利润 。 我们展示了一个以时间运行的算法 : 美元 + 1 = 1 - kmaxx = k- knapsack : 0-1- Knapsorthack 在时间运行的时间里运行的算法 $, 美元, 美元, 美元 美元, 美元 美元=2, 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 美元= 任何算算算的算的算算算算的算算 。 (n\ = =xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月2日
Arxiv
0+阅读 · 2022年7月2日
Arxiv
0+阅读 · 2022年7月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员