In this paper, we propose a deep learning-based beam tracking method for millimeter-wave (mmWave)communications. Beam tracking is employed for transmitting the known symbols using the sounding beams and tracking time-varying channels to maintain a reliable communication link. When the pose of a user equipment (UE) device varies rapidly, the mmWave channels also tend to vary fast, which hinders seamless communication. Thus, models that can capture temporal behavior of mmWave channels caused by the motion of the device are required, to cope with this problem. Accordingly, we employa deep neural network to analyze the temporal structure and patterns underlying in the time-varying channels and the signals acquired by inertial sensors. We propose a model based on long short termmemory (LSTM) that predicts the distribution of the future channel behavior based on a sequence of input signals available at the UE. This channel distribution is used to 1) control the sounding beams adaptively for the future channel state and 2) update the channel estimate through the measurement update step under a sequential Bayesian estimation framework. Our experimental results demonstrate that the proposed method achieves a significant performance gain over the conventional beam tracking methods under various mobility scenarios.


翻译:在本文中,我们建议对毫米波(毫米瓦维)通信采用基于深学习的波束跟踪方法。 光束跟踪用于使用测音光束和跟踪时间变化的频道传输已知符号,以维持可靠的通信链接。 当用户设备(UE)装置的外形变化迅速时, 毫米瓦维频道也往往变化很快, 从而阻碍无缝通信。 因此, 要解决这个问题, 需要模型来捕捉毫米波道的瞬时行为。 因此, 我们使用深神经网络来分析时间变化频道所隐藏的时间结构和模式以及惯性传感器所获取的信号。 我们提议了一个基于长期短期模拟(LSTM)的模型, 以预测未来频道行为的分布, 其依据是乌克兰现有的输入信号序列。 这种频道分布用于 (1) 控制对未来频道状态进行适应的声波束; (2) 通过连续的Bayesian估计框架的测量步骤更新频道估计结果。 我们的实验结果显示,拟议方法在常规假设下取得显著的性能。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机视觉领域顶会CVPR 2018 接受论文列表
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
计算机视觉领域顶会CVPR 2018 接受论文列表
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
ACM UMAP 2018:用户建模与个性化国际会议征搞
LibRec智能推荐
4+阅读 · 2017年10月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员