Although mechanical ventilation is a lifesaving intervention in the ICU, it has harmful side-effects, such as barotrauma and volutrauma. These harms can occur due to asynchronies. Asynchronies are defined as a mismatch between the ventilator timing and patient respiratory effort. Automatic detection of these asynchronies, and subsequent feedback, would improve lung ventilation and reduce the probability of lung damage. Neural networks to detect asynchronies provide a promising new approach but require large annotated data sets, which are difficult to obtain and require complex monitoring of inspiratory effort. In this work, we propose a model-based approach to generate a synthetic data set for machine learning and educational use by extending an existing lung model with a first-order ventilator model. The physiological nature of the derived lung model allows adaptation to various disease archetypes, resulting in a diverse data set. We generated a synthetic data set using 9 different patient archetypes, which are derived from measurements in the literature. The model and synthetic data quality have been verified by comparison with clinical data, review by a clinical expert, and an artificial intelligence model that was trained on experimental data. The evaluation showed it was possible to generate patient-ventilator waveforms including asynchronies that have the most important features of experimental patient-ventilator waveforms.
翻译:虽然机械通风是伊斯兰法院联盟中挽救生命的干预措施,但是它有有害的副作用,例如巴洛特拉马和伏地拉,这些伤害可能由于气压变化而发生。Asynchronies被定义为通风机时间和病人呼吸努力之间的不匹配。自动检测这些无同步以及随后的反馈,将改善肺通风,减少肺损伤的可能性。神经检测无同步的网络提供了一种有希望的新办法,但需要大量的附加说明的数据集,这些数据很难获得,并且需要对呼吸系统的努力进行复杂的监测。在这项工作中,我们提出一种基于模型的方法,通过扩大现有肺部模型和先行呼吸器模型之间的不匹配,为机器学习和教育使用制作一套合成数据集。所衍生的肺部模型的生理性质使得能够适应各种疾病类型,从而产生不同的数据集。我们用9种不同的病人型号制作了一个合成数据集,这些数据来自文献中的测量结果。模型和合成数据质量经过与临床数据的比较,临床专家对模型进行了核查,对模型和合成数据质量进行了审查,通过扩展了用于机器学习和教育目的学习的模型,包括实验式波质模型。经过培训的实验式模型显示的实验式模型,该模型为可能的实验式的实验式的实验式,该模型显示的实验式的实验式的模型是重要的试验式的,该模型,该模型和实验式样样样样样样样样样样的模型显示了它作为实验式的实验式的实验式的实验式的模型显示。